SOLUTES IN SULPHURIC ACID—V^a EFFECTS OF SUBSTITUENTS ON THE IONIZATION OF BENZENESULPHONIC ACIDS

P. K. MAARSEN, R. BREGMAN and H. CERFONTAIN*

Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands

(Received in the UK 19 October 1973; Accepted for publication November 1973)

Abstract—The ionization of the three isomeric aniliniumsulphonic acids and *m*-trimethylammoniumbenzenesulphonic acid has been measured by UV techniques. The ionizations are governed by the benzophenone acidity function H_0^* . The ionization of the aniliniumsulphonic acids studied involves the oxygen bonded hydrogen. Substituent effects on the ionization are small ($\rho = 0.7 \pm 0.1$).

It was recently shown¹ that arenesulphonic acids ionize in aqueous sulphonic acid according to

$$\operatorname{ArSO}_{3}H \rightleftharpoons \operatorname{ArSO}_{3}^{-} + H^{+}.$$
 (1)

In connection with our studies on the sulphonation of aromatic amines, it was of interest to study the ionization behaviour of arenesulphonic acids containing the strongly electron-withdrawing $-NH_3^+$ and $-NMe_3^+$ substituents.

Half-neutralization potentials of several arenesulphonic acids (including metanilic and sulphanilic acids) in aqueous alcoholic media have been estimated.² It was found that the acidities of the sulphonic acids follow the order predicted by the Hammett substituent constants.

The ionization of the anilinium sulphonic acids in aqueous sulphuric acid was studied by the UV technique.' Absorption spectra in aqueous sulphuric acid ≤ 50 and $\geq 99.5\%$ H₂SO₄ were taken to

"Part IV: Rec. Trav. Chim. 91, 199 (1972).

*From whom reprints may be obtained.

†Because of the medium effect on ϵ_{B^-} , the [BH]/[B⁻] ratio and thus the estimated pK_e will depend somewhat on the wavelength employed. With e.g. metanilic acid the pK_e values for $\lambda = 258$, 264, 272 and 273 nm were found to be -7.03, -7.00, -7.04 and -7.09 respectively. represent those of the anilinium sulphonates and the anilinium sulphonic acids respectively. The pK_a of the sulphonic acid ionization is defined by³

$$\log [BH]/[B^{-}] = -m \cdot H_{x} + pK_{a}$$
 (2)

where BH and B⁻ stand for ArSO₃H and ArSO₃⁻ respectively and *m* is the slope of the graph obtained by plotting $\log [BH]/[B^-]$ vs the acidity function H_{1} . For the acidity function that governs the sulphonic acid ionization m should be equal to unity. The [BH]/[B⁻] ratios were obtained from the graphs of E/cd at an appropriately selected wavelength vs the appropriate acidity function. This type of graphs showed that there is a small medium effect on ϵ_{B^-} and no medium effect on ϵ_{BH} . A similar behaviour was observed with the arenesulphonic acids containing a neutral substituent. This is not unexpected, since the sulphonic acid medium effect on the B-band of the anilinium ion is small (Table 1), as was observed with benzene,⁴ and it is virtually absent for the trimethylphenylammonium ion (Table 1). In order to obtain optimal accuracy, such wavelengths were selected that 1st the difference in ϵ of the unionized and the ionized forms is large and that 2nd the apparent medium effect on ϵ_{B^-} is minimal.[†] The selected wavelengths and the corresponding ϵ values for the sulphonic acid form in

Table 1. Spectra of ammonium ions

Compound	% H₂SO₄	λ_{max}, nm^a					
C₀H₃NH₃⁺	15.0	243-8 (101)	248.3 (136)	254.0 (166)	260.1 (127)		
	99·65	243.1 (106)	247.2 (151)	253.0 (187)	259.2 (140)		
C ₆ H ₅ -NMe ₃ ⁺³	15.0	247.7 (172)	253.6 (228)	257.7 (225)	264-0 (158)		
	80 •0	247.6 (175)	253.5 (228)	257.6 (225)	263-9 (160)		

"The data between brackets are the corresponding molar extinction coefficients expressed in 1 mol⁻¹ cm⁻¹.

							pK, deter	mination	
	100% H ₂ SO, unionized sulphonic acid		15% H₂SO₄ sulphonate		selected wavele		ength €		-H*
Substituent	λ_max	Emax	λ_max	€ max	λ	100% H₂SO₄	15% H₂SO₄	m* (±0·05)	at half protonation
	B-band								
o-NH₃⁺	259 (sh)	780	258 (sh) 263-0	360	272.5	830	140	0.94	7.5 ± 0.1
	271.5	930	269.7	365					
m-NH3 ⁺	259 (sh) 264·3	590 840	258 (sh) 263-0	305 370	273-0	64 0	130	0.86	7.09 ± 0.05
	271·2	760	269·8	340	074.0	C 40	60	0.00	7.04 + 0.05
p-NH3	259 (sn) 264∙0	1140	258 (sn) 263-5	355 420	2/4.0	640	50	0.97	/•04 ± 0•05
	271.2	1060	269-2	390					
m−NMe,*	258 (sh) 264∙0 271∙2	550 750 710	258 (sh) 262+5 269+4	280 310 250	274.0	310	50	0.80	$7 \cdot 23 \pm 0 \cdot 05$

Table 2. Spectra and ionization of ammoniumbenzenesulphonic acids

 $m = d(\log [BH]/[B^{-}])/d(-H_{o}^{*}).$

100% H_2SO_4 and the sulphonate form in 15% H_2SO_4 are given in Table 2.

On plotting ϵ_{λ} against the common acidity functions H_{α} , H_{α}^{*} and H_{λ} sigmoid curves were obtained. The graphs of log [BH]/[B⁻] vs the acidity functions are linear. As judged from the *m* values, the most satisfactory correlation is obtained with H_0^* , the correlation with H_{A} is somewhat less and that with H_0 poor;* with e.g. sulphanilic acid for $\lambda =$ 274 nm the m values for H_0^* , H_A and H_0 are 0.82, 0.70 and 0.51 respectively. Accordingly the ionization of the aniliumsulphonic acids in concentrated aqueous sulphuric acid involves the oxygen (and not the nitrogen) bonded hydrogen. The similarity in ionization behaviour of these sulphonic acids and *m*-trimethylammoniumbenzenesulphonic acid further substantiates this conclusion. The pK_{s} data based on H_0^* are collected in Table 3. The ionization of the nitrogen-bonded hydrogen in e.g. paniliniumsulphonate takes place at much lower acidities, its pK, being 3.23.¹²

The graph of pK, vs σ for the presently and pre-

Table 3. pK_* of ammoniumbenzenesulphonic acids based on H_*^*

Substituent	- pK.	σ	
0-NH1+	7.5 ± 0.1		
$m - NH_3^+$	7.09 ± 0.05	0.6410	
p-NH.	7.04 ± 0.05	0·485 ¹⁰	
m-NMe,*	7.23 ± 0.05	0.8811	

 ${}^{*}H_{o}^{*,6}H_{A}^{7,s}$ and H_{o}^{*} are the benzophenone, the primary amide and primary aniline acidity function, respectively.

viously¹ studied m- and p-substituted benzenesulphonic acids is linear (Fig 1), the ρ value being 0.7 ± 0.1 . The σ value of a charged substituent is known to vary somewhat with the ionic strength of the medium;¹³ the points for this type of substituents, however, do fall on the line defined by the neutral substituents. The σ value reported by Kreshkov *et al.* for p-NH₃⁺ in the poorly solvating aqueous alcohol (= 0.84)² would lead to a strongly deviating point and does apparently not apply to our sulphuric acid system.

The ionization behaviour of protonated phenylsulphamic acid in dilute aqueous sulphuric acid

$$Ar - NH_2^+ - SO_3^- \rightleftharpoons Ar - NH - SO_3^- + H^+ \qquad (3)$$

differs from that of the isomeric anilinium sulphonic acids in that equilibrium (3) is governed by the H_o acidity function (m = 0.87).¹⁴ Accordingly the protonation of phenyl sulphamic acid occurs at nitrogen and not at oxygen. The pK, based on H_o was found to be -2.03 ± 0.05 , a value close to that reported for the p-methoxy derivative.¹⁵

The pK₄'s of the nitrobenzenesulphonic acids defy determination by the UV technique. With onitrobenzenesulphonic acid the spectral variation with varying sulphuric acid concentration is substantial,¹ but similar to that of nitrobenzene (in 15% H₂SO₄: $\lambda_{max} = 268 \cdot 8 \text{ nm}, \epsilon = 7300$ whereas in 95.3% H₂SO₄: $\lambda_{max} = 290 \cdot 0 \text{ nm}, \epsilon = 3490^3$) indicating that the spectral variations of the sulphonic acid ionization are completely overshadowed by the spectral variations of the nitro-moiety, possibly as a result of variations in solvation. The spectral variations of m- and p-nitrobenzenesulphonic acid are both

Fig 1. Correlation of pK_{*} with σ for a renesulphonic acids.

small as compared with the *o*-isomer (for the 250–280 nm region absorption: $\Delta \lambda_{max} \sim 2$ nm, $\Lambda \epsilon_{max} < 4\%$; for the 208 nm absorption of the *meta*-isomer $\Delta \lambda = 0.4$ nm, $\Delta \lambda_{max} \leq 4\%$). A similar failure to detect the sulphonic acid ionization by UV spectra was recently reported for the two naphthal-ene-monosulphonic acids.¹⁶

EXPERIMENTAL

The UV measurements were made with a Zeiss PMQ-3 and a Cary 14 spectrophotometer.

Sulphanilic acid (Fluka, puriss.) was recrystallized from aqueous alcohol. Orthanilic (Fluka, pract) and metanilic acid (Fluka, tech) were treated with charcoal and recrystallized several times from aqueous alcohol. *m*-Trimethylammoniumbenzenesulphonate was prepared from metanilic acid by methylation and purified by recrystallization from 95% ethanol.¹⁷ The preparation of the potassium o-, *m*- and *p*-nitrobenzenesulphonates has been described previously.'

REFERENCES

¹H. Cerfontain and B. W. Schnitger, *Rec. Trav. Chim.* 91, 199 (1972)

- ²A. P. Kreshkov, S. V. Vasileva and L. N. Balyatinskaya, J. Gen. Chem. U.S.S.R., **40**, 2310 (1970)
- ³C. C. Greig and C. D. Johnson, J. Am. Chem. Soc. 90, 6453 (1968)
- ⁴H. Cerfontain, Rec. Trav. Chim. 84, 491 (1965)
- ⁵C. van Lenten and H. Cerfontain, unpublished results
- ⁶T. G. Bonner and J. Philips, J. Chem. Soc. (B), 650 (1966) ⁷K. Yates, J. B. Stevens and A. R. Katritzky, Can. J. Chem. 42, 1957 (1964)
- ^aC. D. Johnson, A. R. Katritzky and N. Shakir, J. Chem. Soc. (B), 1235 (1971)
- ⁹M. J. Jorgenson and D. R. Hartter, J. Am. Chem. Soc. 85, 878 (1963)
- ¹⁰A. V. Willi and W. Meier, *Helv. Chim. Acta* 39, 318 (1956)
- ¹¹D. H. McDaniel and H. C. Brown, J. Org. Chem. 23, 420 (1958)
- ¹²J. J. Christensen and L. D. Hansen, J. Chem. Soc. (A), 1212 (1969)
- ¹³H. Zollinger and W. Wittwer, Helv. Chim. Acta 39, 347 (1956)
- "P. K. Maarsen and H. Cerfontain, unpublished results
- ¹⁵E. Yu. Belyaev, L. I. Kotlyar and L. M. Timokhina, Reakts. Sposobnost. Org. Soedin. 7, 294 (1970)
- ¹⁶G. J. Yakatan and S. G. Schulman, J. Phys. Chem. 76, 508 (1972)
- ¹⁷J. C. D. Brand and A. Rutherford, *J. Chem. Soc.* 3927 (1952)